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A Brief History of Investments m

January 1926 to December 2013

Asset Mean Volatility Min Median Max CumRet
Large Stocks 10.4 18.8 -29.7 1.3 42.6 §5,922
Small Stocks 12.2 28.8 -36.7 1.5 73.5 526,044
Long-Term Corp Bonds 5.7 7.8 -20.3 0.4 15.6 S$129
Long-Term Govt Bonds 5.5 8.2 -9.5 0.3 15.6 S112
Intermediate-Term Govt Bonds 5.3 4.4 -6.4 0.3 12.0 S93
Treasury Bills 3.5 0.9 -0.1 0.3 1.4 S21

® |nvestors like return

" |nvestors dislike risk (volatility); prefer predictability

Expected Return — Riskfree Rate
Risk

What About Perfect Asset Allocation?
= $211,652,388,429

Sharpe Ratio =
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Risk and Reward
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The Quant Meltdown of August 2007 m

Quantitative Equity Funds Hit Hard In August 2007

= Specifically, August 7-9

= Massive reversal on August 10

=" Some of the most consistently profitable funds lost too

Wall Street Journal September 7, 2007

= Seemed to affect only quants

AUGUST AMBUSH

= No real market news How Market Turmoil
Waylaid the ‘Quants’

Morgan Stanley Star Is  pying up
Among Those Battered;  Estimated assets i quant hedge funds

But Lack of Transparency Is No Time for Music Now ’"m mon ks e
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The Quant Meltdown of August 2007 m

Use Investment Strategy As Research Tool

= Khandani and Lo (2007, 2010) simulate basic mean-reversion
strategy of Lehmann (1990) and Lo and MacKinlay (1990)

= Buy previous “losers” and sell previous “winners”
" Bet on mean reversion
= Portfolio weight for stock i at date t:

wit (k)

N
> wi(k) = 0 Market Neutral
i=1

LR R., ) , R — EN: R
— it—k — tunt—k ) mt—k — 1it—k
N N =
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The Quant Meltdown of August 2007 m

Use Investment Strategy As Research Tool

Example of Mean-Reversion Strategy, k=1

Ticker Rt—l Rt—l - Rmt—l It
(%) (%) ($MM)
C 1.55 1.62 -45.53
IBM -0.89 -0.82 23.15
INTC -0.97 -0.90 25.32
MCD -0.18 -0.11 3.03
MRK -1.79 -1.73 48.50
MSFT 1.87 1.94 -54.47
Average: -0.07 Sum: 100.00
Sum: -100.00
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The Quant Meltdown of August 2007

Use Investment Strategy As Research Tool

Profit m (k) = Zwit(k)Rit
i=1
L/Fkb 1 1 a 2
Em(e)] = 2 - Lam) - 23 (n - )
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The Quant Meltdown of August 2007 m

Use Investment Strategy As Research Tool

AUM in TASS Equity Hedge Funds and
the Profitability of the Contrarian Trading Strategy

Year Mean SD Sharpe o0 1995 to 2007 ro%
1995 L138% 0A0% 5387 i =t e -
1996  1.17% 0.48% 38.26
1997 0.88% 0.68% 20.46 \\ I_ |
1998  057% 0.84% 1062  _ \ s
1999  0.44% 1.02%  6.81 g \ 2 e 2
2000 0.44%  1.68% 4.17 2 ® \ l I BEEEIW :
2001  031% 1.43%  3.46 o BT
2002  0.45% 0.98%  7.25 . Y,Z\Y A | o
2003 021% 0.54%  5.96 ) HA'dRNRIm
2004 0.37% 053%  11.07 | m m ] o
2005 0.26% 0.46% 8.85 1995 | 1996 I 1997 | 1998 I 1999 I 2000 I 2001 I2':":'2 I 2003 | 2004 I 2005 I 2006 | 2007 o

w07 o1 o 2 “——4x: E[R] = 0.60%
SD[R] = 2.08%
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The Quant Meltdown of August 2007
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The Quant Meltdown of August 2007

Cumulative m-Min Returns of Intra-Daily Contrarian Profits for Deciles 10/1 of
S&P 1500 Stocks July 2 to September 30, 2008
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The Unwind Hypothesis m

" |Losses due to rapid and large unwind of quant fund(s)
" Liguidation was likely forced, given “firesale” prices

= |nitial losses caused other funds to cut risk and unwind

" Unwinding caused further losses across broader set of
equity funds

" Friday rebound consistent with a liquidity trade, not an
information-based trade

"= Rebound due to “bargain-hunters”
= |nvestment horizons differ for different stakeholders
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Analyzing Investment Frequency m

" Expected returns drive investor behavior

Rpt — sz‘tRz't
1=1
E[Ry] = > ElwaRil = ) wyE[Ry]
1=1 1=1

= But portfolio weights may not be deterministic

Wit = Wit(Xt—1§(9)
ERy] = > Blwa(Xi-1;0)Ru] # > wie(Xi—1)E[Rs]
=1 1=1
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Analyzing Investment Frequency m

" Expected return decomposition (Lo, 2008):

E[Rpt] = Z E[wit (Xt—1§ H)th] — Z (COV [wit, th] —+ E[wzt]E[th])
Active Passive
Component Component

= Covariances vary across investors
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Analyzing Investment Frequency m

= Use frequency representation (Chaudhuri and
Lo, 2015):

Blry] = [ 3 Panw)d
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= Cross power density spectrum

= Decomposes expected return and investment
behavior into distinct frequencies
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Analyzing Investment Frequency m

" Mean-reversion strategy with white noise:

q=1,A=0
2
I'.'I..g

—TT —m/2 0 /2 T

w

" |n phase at high frequencies
= Out of phase at low frequencies
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Analyzing Investment Frequency m

" Mean-reversion strategy with momentum:

q=1,A>0

—TT —m/2 0 /2 T

LEH

" More power at low frequencies (out of phase)
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Analyzing Investment Frequency m

" Mean-reversion strategy with mean reversion:

. q=1,A<0 .

—TT —m/2 0 /2 T

i)

Pwr{m}

" More power at high frequencies (in phase)
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Analyzing Investment Frequency m

" Empirical analysis of historical data
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Analyzing Investment Frequency m

Opens a Large Field of Potential Applications

= |dentify key frequencies for each investor type
" Construct frequency-optimized portfolios

" Coupled oscillators

" Are there “resonant frequencies” for the
financial system?
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Privacy vs. Transparency

Predicting Social Security numbers from public data

Alessandro Acquisti’ and Ralph Gross

Carnegie Mellon University, Pittsburgh, PA 15213

PNAS 106 (July 2009)

Communicated by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, May 5, 2009 (received for review January 18, 2009)

Information about an individual’s place and date of birth can be
exploited to predict his or her Social Security number (SSN). Using
only publicly available information, we observed a correlation
between individuals’ SSNs and their birth data and found that for
younger cohorts the correlation allows statistical inference of
private SSNs. The inferences are made possible by the public
availability of the Social Security Administration’s Death Master
File and the widespread accessibility of personal information from
multiple sources, such as data brokers or profiles on social net-
working sites. Our results highlight the unexpected privacy con-
sequences of the complex interactions among multiple data
sources in modern information economies and quantify privacy
risks associated with information revelation in public forums.

identity theft | online social networks | privacy | statistical reidentification

number (SN). The SSA openly provides information about the
process through which ANs, GNs, and SNs are issued (1). ANs
are currently assigned based on the zipcode of the mailing
address provided in the SSN application form [RM00201.030]
(1). Low-population states and certain U.S. possessions are
allocated 1 AN each, whereas other states are allocated sets of
AN (for instance, an individual applying from a zipcode within
New York state may be assigned any of 85 possible first 3 SSN
digits). Within each SSA area, GNs are assigned in a precise but
nonconsecutive order between 01 and 99 [RM00201.030] (1).
Both the sets of ANs assigned to different states and the sequence
of GNs are publicly available (see www.socialsecurity.gov/employer/
stateweb.htm and www.ssa.gov/history/ssn/geocard.html). Finally,
within each GN, SNs are assigned “consecutively from 0001
through 99997 (13) (see also [RM00201.030], ref. 1.)
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Is There A Compromise Between
Data Privacy and Transparency?




Secure Multi-Party Computation
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Privacy and Transparency m

Transparency and Privacy Can Both Be Achieved
= Abbe, Khandani, and Lo (2012, 2015)
" |ndividual data is kept private, e.g., RSA

" Encryption algorithms are “collusion-robust”
= Aggregate risk statistics can be computed using

- . Wl -l Wl W Wi

— Means, variances, correlations, percentiles,
Herfindahl indexes, VaR, CoVaR, MES, etc.

" Privacy is preserved, no need for raw data!
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Privacy and Transparency

OFFICE OF
FINANCIAL RESEARCH

U.5. DEPARTMENT OF THE TREASURY

Office of Financial Research
Working Paper #0011
September 4, 2013

Cryptography and the Economics of Supervisory
Information: Balancing Transparency and
Confidentiality

Mark Flood,! Jonathan Katz,” Stephen Ong,’
and Adam Smith*

! Difice of Financial Research, mark.flood@treasury.gov

*u niversity of Maryland, jkatz @cs.umd edu
?Federal Reserve Bank of Clevela nd, stephen.j.ong @dev.frb.org
#Pennsylvania State University and Office of Financial Research, asmith@ cse.psu.edu

The Office of Financial Research |{OFR) Working Paper Series allows staff and their co-authors to
disseminate preliminary research findings in a format intended to generate discussion and critical
comments. Papers in the OFR Working Paper Series are works in progress and subject to revision.

Views and opinions expressed are those of the authors and do not necessarily represent official
OFR or Treasury positions or policy. Comments are welcome as are suggestions for improvements,
and should be directed to the authors. OFR Working Papers may be quoted without additional
permission.

www.treasury.gov/ofr




Conclusion

" Technology has transformed everything!

Financial markets are vastly better off \\
- X

But new challenges have emerged
We can do better "
We have to do better

Regulation has to account for technology and
how it interacts with human behavior

Signal processing can play a critical role in
measuring and managing systemic risk
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